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Abstract

Recently there has been a great deal of interest in
Voronoi Game: Two players insert a certain number
of facilities in a determined number of rounds. The
Voronoi Diagram of the inserted facilities is calculated
and the winner is settled based on the Voronoi Region
occupied by either of the players. A special version
of the game in which the players insert their facili-
ties in a single round is called ”One Round Voronoi
Game”. Most of the previous studies in this area are
performed in continuous game regions and facilities
are considered as single points in the region with no
area. In this paper, a new approach to One Round
Voronoi Game is presented. Two players insert their
facilities on a rectangular grid in one round. The area
of the grid is shared between the players based on the
nearest neighbor rule with Manhattan metric. Win-
ning strategies are proposed for the first player in both
one and two dimensional grids and the optimality of
the strategy is proven in the one-dimensional case.
Furthermore, the lower bound of winning margin is
presented in both cases.

1 Introduction

Facility location is an optimization problem, concern-
ing with placing a set of facilities which serve a set of
customers based on an optimality measure. Adding
competitive market players to this context and com-
bining it with the arguments of game theory leads to
the competitive facility location problem. This prob-
lem has been extensively studied in different fields
such as computational geometry, mathematics, indus-
trial engineering and operation research. The Voronoi
game is a simple geometric model for the competi-
tive facility location problem. From the viewpoint of
rounds, there are two types of Voronoi game. In the
one round version, the first player (White denoted
by W ) places a set of k facilities in the game region,
followed by the second player (Black denoted by B)
having the same number of facilities. In the other
variation which is called k-round game, two players
place one facility each alternately for k rounds in the
game area.

∗Department of Computer Science and Informa-
tion Technology, Institute for Advanced Studies in
Basic Sciences (IASBS), Zanjan, rebvar@oulu.fi,

{m khosravian,mdmonfared,b sadeghi b}@iasbs.ac.ir

Voronoi game has been widely studied in the continu-
ous space domain. One dimensional k -round Voronoi
game where the game region is a line segment or a cir-
cle was studied by Ahn et al. [1]. The second player
(B) always wins the game by a winning margin of
arbitrary small ε > 0. Their defined k -round game is
different from the one round game on the continues
line segment where W can achieve a win by placing
his facilities at the odd integer points. Also, similar
to the k -round case, W can limit the loss margin as
much as he wishes. Fekete and Meijer [2] proposed a
model for two dimensional one round game played on
a rectangular continuous demand region. They stud-
ied the winning conditions in terms of facility count
and aspect ratio of the game board. The discrete
Voronoi game was introduced by Teramoto et al. [3].
Two players place n facilities each in a graph which
contains at least 2n nodes. They showed that in a
complete k − ary tree which is large enough with re-
spect to n and k, the first player has a winning strat-
egy. The Voronoi game on graphs and particularly on
trees were later studied by Kiyomi et al. [4]. They
showed that the game played on a path containing n
vertexes and continued for t < n

2 rounds will end in
a tie if either n is even or t is not one. When n is
odd and t = 1, the first player wins the game. Banik
et al. [5] studied another variation of the discrete
Voronoi game which is played on a simple polygon.
They proposed the complexity results when the num-
ber of facilities for each player is limited to one. They
also studied one round discrete Voronoi game on a line
segment [6]. In this problem, the players are compet-
ing for owning a set of n users by placing a set of m
points each. They proved that if the sorted order of
the n points on the line segment is known, the optimal
strategy for the second player and first player can be
computed in O(n) and O(nm−λm) respectively where
0 < λm < 1 is a constant. Gerbner et al. [7] studied
t-round voronoi game on graphs. They proved that
there are graphs for which the second player gets al-
most all vertices in the game, but this is not possible
for bounded-degree graphs. Further they showed that
for trees, the first player can get at least one quarter
of the vertices.
In this paper, we study the one round discrete Voronoi
game on a grid G(m,n). To achieve a better model,
facilities are considered to have area. The problem is
studied in one dimensional grid first and a winning
strategy that guarantees the winning margin of one is
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proposed for W . Further, the optimality of W ’s strat-
egy is shown as well. Two dimensional case in which
the width of the grid, m, is an odd number is studied
as well and condition of W ’s win are computed. These
computations provide lower bounds in a way that W
wins the game by a margin of m. It is clear that in
the grid with even m, the symmetry play by B ends
the game in a tie in most cases. However, proposing
a winning strategy for even m seems much harder.
The rest of this paper is organized as follows: In the
next section, the game definitions and formulation are
presented. In Section 3, Voronoi game on the one di-
mensional grid is studied. The game in two dimen-
sional grid board is discussed in Section 4. Finally,
the last section summarizes some open issues which
are introduced by this problem. Please see [8] for the
complete proofs.

2 Voronoi Game on Grid

Grid Voronoi Game is denoted by GV Gr(G, k) in
which k is the number of facilities for either of the
players and r is the number of play rounds. In the
rest of this paper G(m,n) is considered as the game
play board. G is a rectangular grid with the length
of n and the width of m and consists of m × n unit
squares called cells. All of the distances are measured
using Manhattan metric. In the one round game vari-
ation (r = 1) each of the players (White denoted by
W as the first player and Black denoted by B as the
second player) chooses a set of k facilities disjoint from
each other. One or both of the players will own the
total area or a part of a cell respectively based on
the nearest neighbor rule. Hence, the area of a cell
which has the same distance from some cells occupied
by W or B, is shared among them. Furthermore, by
placing a facility in a cell, the corresponding player
will own all the area of that specific cell. The player
owning the largest part of the region is the winner of
the game.

3 One Dimensional Grid Voronoi Game

In this section, G(1, n) is considered as a one dimen-
sional grid with the length of n (and the width of
m = 1). Without the loss of generality, suppose that
the orientation of the grid is horizontal as illustrated
in Figure 1.

Definition 1 The distance between two consecutive
inserted facilities of W is called an interval. The hor-
izontal distance between the left side of the game re-
gion and the leftmost occupied cell by W is called left
half interval and is denoted by LHI. Likewise, the half
interval between the right side of the game region and
the rightmost occupied cell by W is called right half

Figure 1: One dimensional grid Voronoi game
GV Gr=1(G(m = 1, n = 16), k = 3)

interval and is denoted by RHI. The length of any
full/half interval I is denoted by |I|.

Considering the definitions we show that selecting the
position of facilities according to⌊

(2i− 1)× n
2k

⌋
; i = 1, ..., k (1)

in GV G1(G(1, n), k) is a winning strategy for W . To
prove it, the following propositions are required. Note
that counting the grid cells is started from zero (see
[8] for the extended versions and their proofs).

Proposition 1 It is obvious that the distance be-
tween two optional cells is an integer number. If
Eq. (1) is used the maximum length of a full in-
terval in case of existence is

⌊
n
k

⌋
. An interval with

the maximum length is denoted by IMAX. The min-
imum length of a full interval in case of existence is⌊
n
k

⌋
− 1. IMIN indicates a full interval with the min-

imum length. For any n, |RHI| ≤ |LHI| holds. As a
result |RHI|+ |LHI| ≤

⌊
n
k

⌋
.

Proposition 2 B will own at least |LHI| of the game
region by placing a facility in an IMIN interval. This
means that selecting LHI or RHI is dominated by the
selection of an empty IMIN interval. Further, Placing
two facilities in one IMIN or IMAX interval is not an
efficient placing strategy for B.

Theorem 3 W wins GV G1(G, k) in G(1, n) by se-
lecting the position of his facilities according to Eq.
(1) where 2k - n. The game ends in a tie when 2k | n.

Proof. Assume that t is the number of IMIN inter-
vals when W places his facilities according to Eq. (1).
The number of IMAX intervals will be k−1− t. Con-
sidering Propositions 1 and 2, B is forced to place a
facility in each interval and finally places a facility in
LHI. Hence, the Voronoi region of W and B can be
calculated. For the complete proof see [8]. �

3.1 Proof of Optimality

In this section, we prove that the placing based on Eq.
(1) is an optimal placement strategy for W . It is clear
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that different arrangements of IMIN and IMAX inter-
vals between LHI and RHI are also optimal placement
strategies if placement based on Eq. (1) is optimal.
The number of different ways to arrange t objects of
one kind (IMAX intervals) and k − 1 − t objects of
another kind (IMIN intervals) in a row (all optimal
placement strategies) is (k − 1)!/(t!(k − 1− t)!). In
the following Eq. (1) is used since different arrange-
ments of IMIN and IMAX intervals are equivalent.

Theorem 4 Placing facilities according to Eq. (1) is
an optimal placement strategy for W .

Proof. Suppose that W uses an arbitrary placement
strategy other than Eq. (1) (and its other equiva-
lents). Also, denote the length of created half/full
intervals by L0, L1, ..., Lk from left to the right side
of the grid. It is clear that by inserting a facility in
each one of the white intervals, the difference between
Voronoi region of B and W is

MIN(L0, Lk)−MAX(L0, Lk) + 1. (2)

If MIN(L0, Lk) 6= MAX(L0, Lk) is true, B
will not lose the game (because MIN(L0, Lk) ≤
MAX(L0, Lk)). As a result and since |LHI| = |RHI|
must holds, the loss margin of B is not more than
one if he plays optimally. Also note in previous equa-
tions that the length of each interval is at least one.
Otherwise, B always can achieve a tie by following
the symmetry play (number of intervals is less than
k+ 1). Now, suppose that the length of one of the in-
tervals, I, is bigger than |IMAX| (|I| = |IMAX|+L).
We investigate this problem in two cases :L ≥ 2 and

L = 1. First, suppose that L = 2. B gains |IMAX|+3
2

by placing one facility in this interval. Suppose that
L0 = Lk <

⌊
n
2k

⌋
. If L0 = Lk >

⌊
n
2k

⌋
, placing a facility

in an IMIN interval (there exist at least one if k > 2) is
not efficient, because |LHI| = |RHI| ≥

⌊
n
2k

⌋
> 1

2

⌊
n
k

⌋
and as a result |LHI| = |RHI| =

⌊
n
2k

⌋
.

Since
⌊
n
2k

⌋
< |IMAX|+1

2 , placing two facilities in I
when |I| ≥ |IMAX| + 2 guarantees equality for B.
The complete proof can be found in [8]. �

4 Two Dimensional Grid Voronoi Game

The game play scenario in two dimensional game is
fundamentally different. Both of the players can freely
choose the location of their facilities in two directions
and as a result the winning strategies will change.
Since the facilities in the grid Voronoi game have area,
proposing winning strategy is much harder. Further-
more, in the grid Voronoi game more precise winning
margin can be calculated and unlike the continuous
case, none of the players can limit the loss margin ar-
bitrarily. In the following, the winning condition for

W will be discussed. Note however that, these condi-
tions do not mean that B wins the game in the rest
of cases (unlike the continuous region [2]). It is not
difficult to show that B does not lose the game in the
grid with even width (symmetry play in many cases).
In this section suppose that m ≥ 3 is an odd number.

We denote the
(
m+1
2

)th
row of the grid by Rmid and

we call it the middle row. Furthermore, similar to the
one dimensional case, the horizontal distance between
two consecutive facilities of W (which is a rectangle)
is called an interval. In this section, assume that W
will place his facilities according to Eq. (1) horizon-
tally and in Rmid vertically. Therefore, the position of
every facility of W is selected based on the following
equation:(

m+ 1

2
,

⌊
(2i− 1)× n

2k

⌋)
; i = 1, ..., k. (3)

Lemma 5 Let n1 = 5
3m× k −

7
3k + 1 and W places

his facilities in G(m,n) according to Eq. (3). Also,
suppose that B has placed a facility in Rmid in a full
interval. For every n ≥ n1, this position is the most
efficient place for the B’s facility in that interval.

Lemma 6 Assume that B places a facility in an in-
terval I in a way that the total Voronoi region of that
facility remains inside the bounds of I. Also suppose
that the vertical distance from this facility to Rmid
is a > 0. Transferring this facility vertically to Rmid
will increase the Voronoi region and the amount of
increment is a2.

Similar calculation for the case when the Voronoi re-
gion of a facility is in more than just one interval con-
firms the result of the previous lemmas. It is obvious
now that for any n ≥ n1, moving a facility to another
cell in the same interval decreases the Voronoi region
for the facility (except for Rmid). But n1 is not a tight
lower bound (for example GV G1(G(7, 29), 3)). Based
on the number of cells which 1

3 of them are owned by
B, it is easy to show that a lower bound for the width
of the grid (for win margin of m) can be calculated as
follows:

nm =


n1 ;

(
m+1
2

)
mod 3 = 0

n1 − (k − 2) ;
(
m+1
2

)
mod 3 = 1

n1 ;
(
m+1
2

)
mod 3 = 2

(4)

This equation along with the previous lemmas, de-
creases the number of possible facility movements to
two cases called valid movements.

• Transferring a facility from LHI to its neighbor-
ing interval (IMIN or IMAX) including the col-
umn containing W ’s facility.
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(a) Zigzag strategy

(b) Simple strategy

Figure 2: Zigzag vs. Simple strategy.

• Transferring a facility from an IMIN interval to
a neighboring IMAX one including the column
containing W ’s facility.

Definition 2 The intersection of the Voronoi regions
of two facilities is called the overlapping of these fa-
cilities. Possible cases of overlapping (7 cases) are
presented in [8].

Lemma 7 Suppose G(m,n) is a grid in which n ≥
nm. W wins GV G1(G, 2) with the winning margin of
m if 2k - n. The game will end in a tie when 2k | n.

Lemma 8 Let G(m,n) be a grid in which n ≥ nm.
B loses GV G1(G, 3) with the minimum loss margin
of m if 2k - n.

We started to move the facilities by one of the valid
movements. Similar calculations indicate that when
a movement starts with a valid one it can only con-
tinue for at most three facility movements. Theorem
9 covers this problem.

Theorem 9 For any odd m, any optional k and any
n ≥ nm, W wins GV G1(G(m,n), k) with winning
margin of m if 2k - n.

Proof. It is clear that if B plays according to the
simple strategy he loses the game by a loss margin
of m. We are interested in the possibility of win
or a smaller loss margin. To achieve either of these
goals consider the first two facilities of B. Assume
that the Voronoi region of the first move by B is
P ′ and the second one is Q′. Also suppose that by
placing the same facilities in Rmid (according to the
simple strategy), B gains P and Q respectively. It
is clear that for a zigzag movement to be efficient,
|P ′| + |Q′| > |P | + |Q|. Considering this, for any k
and m in a grid with n = nm a zigzag movement must
start with one of the valid movements and only grows
if these conditions hold. One first starts from the left-
most facility of B and proceeds to the right side of
the grid one interval at a time and checks whether one
or both of the valid movements are possible. Assume

that the first valid movement is possible starting from
the left half interval. If k = 2 or k = 3 by Lemma 7
and Lemma 8 we know that B loses the game with
a loss margin of m. Similar reasoning for k > 3 indi-
cates that moving more than three consecutive facil-
ities from Rmid starting with a first valid movement
and independent of the neighboring intervals type is
a non efficient action (Figure 2). Likewise, the second
valid movement will become non efficient in at most
three moves: the Zigzag movement of just two facili-
ties is not efficient (for k = 2 in all cases). Similarly,
three movements in all cases are non efficient. �

5 Conclusion and Future Works

An optimal winning strategy for White (the first
player) in both one and two dimensional grids is pro-
posed. Like other variations of the Voronoi game
problem several questions arise in this context as well.
The most interesting problem is probably the case of
a grid with even width. Showing that B does not lose
is not difficult. B can gain at least half of the game
region in most cases by symmetry play (not possible in
all cases). Two dimensional k -round game which is a
challenging problem in most contexts is an interesting
open problem as well.
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